
MATHEMATICS OF COMPUTATION 
VOLUME 59, NUMBER 199 
JULY 1992, PAGES 21-37 

THE APPROXIMATION OF THE EXACT 
BOUNDARY CONDITIONS AT AN ARTIFICIAL BOUNDARY 

FOR LINEAR ELASTIC EQUATIONS AND ITS APPLICATION 

HOUDE HAN AND XIAONAN WU 

ABSTRACT. The exterior boundary value problems of linear elastic equations 
are considered. A sequence of approximations to the exact boundary condi- 
tions at an artificial boundary is given. Then the original problem is reduced 
to a boundary value problem on a bounded domain. Furthermore, a finite ele- 
ment approximation of this problem and optimal error estimates are obtained. 
Finally, a numerical example shows the effectiveness of this method. 

1. INTRODUCTION 

Many boundary value problems of partial differential equations arising in 
practical applications are given on unbounded domains, such as coupling of 
structures with foundation and fluid flow around obstacles. In finding the nu- 
merical solutions of these problems, it is often difficult to use the classical finite 
element or finite difference method. In engineering, the usual method is to in- 
troduce an artificial boundary and cut off the unbounded part of the domain 
and to set up an artificial boundary condition at the artificial boundary of the re- 
maining bounded domain. For example, the Dirichlet condition and Neumann 
condition are often used for elliptic partial differential equations. In general, 
this artificial boundary condition at the artificial boundary is only a rough ap- 
proximation of the exact boundary condition. Hence, the remaining bounded 
domain must be quite large when high accuracy is required. For such large 
domains, it is still difficult to compute the numerical solution. 

In 1985, we found the exact boundary conditions at an artificial boundary 
for the Laplace equation as a model equation [7]. Moreover, a sequence of 
approximations to the exact boundary condition at the artificial boundary was 
given, and we reduced the original exterior problem to an equivalent (or approx- 
imate) boundary value problem on a bounded domain with integral boundary 
conditions. Then we solved the approximate boundary value problem on the 
bounded domain by a finite element method. An optimal error estimate of 
the finite element approximate solution was obtained and a numerical example 
showed the effectiveness of this method. 
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Boundary value problems on unbounded domains have been studied for 
many years. For example, in 1982, Goldstein [3] studied Helmholtz-type equa- 
tions. The problem was replaced by a boundary value problem on a fixed 
bounded domain. The behavior of the solution near infinity is incorporated 
in a nonlocal boundary condition. In 1984, Feng [4] studied asymptotic radia- 
tion conditions for the reduced wave equation; in 1986, Hagstrom and Keller 
[5] studied the exact boundary condition at an artificial boundary for partial dif- 
ferential equations in cylinders. Shortly thereafter, they used this technique to 
solve nonlinear problems of both elliptic and parabolic type [6]. This technique 
is a rather natural extension of related work on ordinary differential equations 
over infinite intervals by Keller [9], Jepson and Keller [8], and Lentini and Keller 
[1 1]. In 1988, Lenoir and Tounsi [10] studied the various convergence proper- 
ties of the localized finite element method for the two-dimensional sea-keeping 
problem. 

In this paper we show how this technique applies to the exterior problem for 
the linear elastic equations and obtain its finite element approximation on a 
bounded domain. An optimal error estimate of the finite element approximate 
solution is given; moreover, a numerical example shows this technique to be 
very effective. 

2. THE EXACT AND APPROXIMATE BOUNDARY CONDITIONS 

AT AN ARTIFICIAL BOUNDARY 

Let Fi be a bounded, simply closed curve in R2 , and let Q be the unbounded 
domain with boundary Fi. Consider the following exterior boundary value 
problem: 

( l ) -,UU - (A + ) ' + 0 )=f in Q, 

(2) -AuV - (A+P)00 yu + 
Ov 

=f2 in Q, 0/ O Ov\ 

(3) u = 0 on Fi, 
(4) v = 0 on Fi, 

u, v are bounded when r = (x2 + y ?2)1/2 0 +oo 

where (u, v) is the displacement, A, ,u > 0 are the Lame constants, and 
(fi, f2) is the density of the applied body force, the support of which is com- 
pact. 

This problem is defined on an unbounded domain Q. The usual method 
engineers use is to draw a circumference Fe with radius R. Then Q is divided 
into two parts; the bounded part and the unbounded part are denoted by Qj 
and Qe (see Figure 1). Furthermore, suppose that the support of (fJ, f2) is 
in Qj . If a certain boundary condition on the artificial boundary Fe is given, 
then we could solve the problem (1)-(4) on the bounded domain Qj . The goal 
of this section is to derive the exact and an approximate boundary condition 
for the solution of problem (1)-(4) on Fe. 

We now consider the boundary value problem of linear elastic equations on 
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Qi R/ 

FU 1 

FIGURE I 

the unbounded domain Qe with boundary Fe: 

(5) -/u - (A 0 __ 9 + = 0 in Q2, 
Ox (Ou OVy 

(6) -,uAv - (- +,u) 0 9u + ,v = 0 in Q, 

(7) ul re = u(R, 0), 
(8) vlre =v(R, 0), 

u, v are bounded when r +oo. 

We know that the problem (5)-(8) has a unique solution (u, v) if (u(R, 0), 
v(R, 0)) is given. This solution (u, v) can be found in [13, ?83]. For our 
application, the solution (u, v) is given in the following form [7]: 

(9) u(r, 0) = (r2 - R2) W1 + G1, 

(10) v(r, 0) = (r2 - R2)W2+ G2, 

where x = rcos0 and y = rsin0. Here G1, G2, W1, and W2 are harmonic 
functions, and 

00 

( 1 1 ) G1 (r, 0) = + Z(an cos no + bn sin n0)r-, 
n=1 
00 

(12) G2(r, 0) = 2??Z(cn cosno + dn sinn0)rn, 
n=1 

with 

Rn 27r 

(13) an= u(R, 0)cosn0d0, n01,2 2 = ..., 

Rn 2r2 
(14) bn= J u(R, 0)sinn0do, n =1,2,, 

7o 

Rn 27r 
(15) cn=Rj v(R,0)cosn0d0, n=0,1,2, 

Rn jr s (16) dn = v(R, O)sin nOdO n =I1 2, 
7o 
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Furthermore, let 

(17) -? + - = E := -Kp and K =, 
Ox Oy +Y 

Then we know that p is a harmonic function, and 
00 

(18) p(r, 0) = (p1 cosn0 +p2 sin n0)r-n, 
n=2 

with 

(19) ( + K)P1 = (n - 1)(an-- dn-1) 
(20) ( + K)P2 = (n - 1)(bn- + Cn-1), 

and 
00 

(21) WI(r, 0) = - Z{p pcos(n+ 1)0? + p2 sin(n + l)0}r-n-I, 
n=2 

00 

(22) W2(r, 0) = - Z{fp sin(n + 1)0 - p2 cos(n + 1)0}r -n- 1. 
n=2 

Finally, a computation shows 

(23) XWI +yW2= IP, 

(! ~ OG, aOG2 (24) x + / K . 

We now discuss the stress on the boundary Fe . From 

Xx = AE)+ 2,u, XY =Yx a(, +,9 u) YY=AO+2y -, 

we obtain the vector components of stress acting on the boundary Fe: 

Xn = (Xx cos 0 + Xy sin 0) Yn = (Xy cos 0 + Yy sin 0) pe 

Furthermore, we get 

Xn = (, , r-AKpcos 0 + ,u)cos 0 + , , sin 0) 
( Or Ox Ox r=R 

= JL3--u AKp COS 0 + 2ux (WI cos 0 + W2 sin 0) 
Or 

0G, 0 G2 
Ox~ COS 0 + sin 0} 

Ox ~Ox cor?O= sn 
d u ( )- _pcosS +2 + + pcos o + COS 0 o + ,) sin 0) 

The last equality comes from (17) and (23). 
A computation shows 

(u - pcos 0) = 2RWI(R, 0) 0G p(R, 0)cos0 
O r ~ r=R O r r=R 

_2+2K 0G, + 1 aG2 
1 +2K Or r=R (1 + 2K)R 00 r=R 
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By equality (24) we have 

py +_ Cos 0 
+A G ' 2 Cos 0 

2(l + y) 2(l + u) I + 2i Ox r=R ay r=R/ 

fOG1 +G2 ) 
- ~~+ )__Cos 0. 

Hence, we get 

(25) X (u v) ~ 2?+2K OG, 2K 0 G2 ' 

1 + 2K Or r=R (? + 2K)R 00 r=R) 

Similarly, we can get 

(26) Yn(U V) 
2 + 2K O 

R | + 
2K 0 G 

(26) Yn(uv)= I 12K Or r=R + I(1?2K)R 0 0 __) 

Substituting ( 1)-( 16) into (25) and (26) and integrating by parts, we obtain 
the vector components of stress acting on the boundary Fe, 

Xn(U V) 2? 2K + r , 2 a 2u(R, () cos n(0 - qp)d 

(27) 2K uOv(R, 0) 
( +22KiR 00 

= T (u, v), 

E ( ) 2 + 2KC ,u 
00 

;2 0 2V(R . y) cos n (O - () 

n= 1 n 

(28) + 2K ,1u(R, 0) 
I + 2KR 00 

T2(u, v). 

The formula can also be rewritten in the following form: 

X (~~ + 
2+2K 

0 

;27r 82u(R, p) cos n (O- 4v)d 
X(29) n=d 

1 

(29) 2K 7( 2Oj 02v (R, o) sinn(0 - (0) 

1 +2K fRn 0nv(R n 

Y (u v) 2 + 2I du cJ2Zi 2v(R , P) cosn(O 
- 

P)d 

(30) 
) 

+2K 7(R 
I: 

jl 0(02 (0sn n( -() (30) n=1 

+ 2K 1 02u(R, )sinn( - ) 
I + 2K 7rR n= J 0 (P2 n 

We now get the exact boundary condition (27)-(28) (or (29)-(30)) at the ar- 
tificial boundary Fe. Then the restriction of the solution (u, v) of problem 
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(1)-(4) to the bounded domain Qi is a solution of the following problem: 

(31) -uAu - (A +,u)0 
a au +_ =v f in Qj, Ox (Ou avy 

(32) -,uAv - (A + ,u) a) 
au 

+ Z9y = 2 in Q, ay Ou ay 

(33) u =0 on ri, 
(34) v = 0 on Fi, 

(35) X, = T1(u ,v) on Fe, 

(36) Y, = T2(u, v) on e. 

This is a boundary value problem with global boundary condition on Fe. Let 

2 + 2K U N [27 02u(R, p) cosn(O - qi) 

T{N(u, v)N ?K 2R dZ 
I +2K 7TRn=1J 0 (2 n 

2K N2 27ra2v (R, () sin n(O - p)d 
I1?2K 7R n= Oq2P 

T~(u,v)2 2?2K,LNj2U9 2V(R, (o)cos n(O -q)~ 

2K Ni /2O a2u(R, (p) sin n(O - ") 

I+2K7TR Ln= 0(2 n 

and T?(u, v) = 0, T20(u, v) = 0. Then we get a sequence of approximate 
boundary condition on the artificial boundary Fe, 

(37) Xn = TN(u, v) on Fe, 

(38) Yn = T2N(u, v) on Fe, 

for N = 0, 1,2 .I When N = 0, then (37)-(38) reduces to 

Xn = 0 on e, Yn = 0 on Fe, 

which is often used in engineering. 
By means of the approximate boundary condition (37)-(38), we reduce the 

original problem (1)-(4) to the following problem on the bounded domain Q2 
approximately for N = 0, 1, 2, ...: 

(39) -US - (A + ,u) 
a 

au) + ) = f0 in QO, 

(40) -tAv - (A + ) 
a 

aux + y) = f2 in Qj, 

(41) u = 0 on Fi, 

(42) v =0 on Fi, 

(43) Xn = TIN(u, V) on Fe, 

(44) Yn = T2N(u, v) on Fe. 
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In the following section we will show that the boundary value problems (31)- 
(36) and (39)-(44) are well posed. 

3. THE SOLUTION OF PROBLEMS (31)-(36) AND (39)-(44) 

Let Hm(Qi) and Hs(Fe) denote the usual Sobolev spaces on the domain Qj 
and the boundary Fe, with integer m and real s. Furthermore, let 

H. (Qj) = {v e H (Qj); v I ri = Of with norm Ivl II 1, Q2, 

V = H (Qi) x H (Qi) with norm 11(U, V)112 = uH U12 + IV 12Q. 

Then the boundary value problem (31)-(36) is equivalent to the following vari- 
ational problem: 

Find (u, v) e V such that 

A(u, v; iu, v) + B(u, v; ui, v) 

(45) i=Jj(fif + 2V) dx dy V(u, v) e V, 

where 

A(u, v; ui, v) 
au av) +au al ( OU,u OvOvO 

Ox oxOx 4ay ay) 7 

+ tax + auJ t06 + a )J dx dy Ox( ay~) (? ) }ady d 

V(u, v), (ui, v) E V, 

B(u, v; ui, v) 

2+2Ki fO 27 2 au(R, ()Oa(R, 0) 0v(R, (0)v(R, 0) 
1 + 2K i 7 0 ( 00 _+ 0 P 00J 

cos n ( - ~d(0d0 
n 

2K i f27f 2c |0v(R, ()0a(R, 0) 0u(R, (p)0i(R, 0) + E2J]j+ 
n=1 0( 0 00 0 , a 00 

sinn(O - o) d(0 dO V(u, v), (U, V) e V. 
n 

Furthermore, let 

BN(U, V; Ui, V) 

2 2?2c /jN 27 j27| afu(R, (0) a U(R, 0) +v(R, (p) 0i(R, 0) 
1 + 2K n=1 0( 00 + 0(P 00J 

cosn (0 - ~~(0d 
n 

2K du 
N 27 }27 Ov(R, ?) OU(R, 0) Ou(R, (p) 0i(R, 0) + ' 0 0 + 

1 + 2K 7r nJO JO a 0(0 00 

sinn(O- o) d(0 dO V(u, v), (U, V) e V. 
n 
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Then the boundary value problem (39)-(44) is equivalent to the following vari- 
ational problem: 

Find (UN, VN) E V such that 

(46) A(UN, VN; Ui, V) + BN(UN, VN; Ui,V) 

=JJ (fia+f2D)dxdy V(a, D)eV. 

From Korn's inequality [12], we know that the following holds. 

Lemma 1. The bilinear form A(u, v; Ui, VJ) is symmetric, bounded, and coercive 
on V x V. That is, there are two positive constants Mo and lo such that 

A(u, v; U, v)?I < Mo1(u, v)jjvjj(uv)V)jvV(u, V), (.) V) E V) 

A(U, V; U, V) > ,BOll(U, V)112v V(U, V) E V. 

For the bilinear forms B(u, v; a, V) and BN(U, V; U, V),we have 

Lemma 2. The bilinear forms B(u, v; iU, V) and BN(U, V; iU, V) are symmet- 
ric and bounded on V x V, i.e., there is a constant M1 > 0 such that 

(47) IB(u, V; Ui, D)l < M111(u, v)jjvjj(fi, D)Ilv V(u, v), (iu, v) cz V, 

(48) IBN(U, V;iU, V)I < Mlll(u, V)IIVII(f')II vlV (U, v), (u,v) EV- 

Furthermore, 
B(u, v; u, v) > O V(u, V) e V, 

BN(U, V; U, V) >V O (U, V) e V. 
Proof. We recall an equivalent definition of Sobolev space Hs(Fe) [14]: 

00 

u E HS(Fe) Z u =ao + ,(an cos nO + bn sin nO) 
n=1 

oo 1/2 

and IjullA, = ao + Z1 + n2)s(a2 + b2) ) < ?? 

where IjullA,, is an equivalent norm in Hs(Fe). 
For any (u, v), (ui, v) e V we know that uI re, v| I fp ,and iiI r, belong 

to the space H1/2 (Fe) by the trace theorem. Assume 

00 

u(R, 0) = a Z + ,(an cos nO + bn sin nO), 
n=1 
00 

v(R, 0) = co + Z(cn cosn6 + dn sinno), 
n=1 

- oo 

iu(R, 0) = ao +0(an cos no + bn sin no) 
n=1 

- 00 

D(R~ 06) = CO J+(en cosn + dn sin no). 
n= 
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Then 
/ o 1/2 

Iu(R, O)IIA,1/2 = + E(1+ n2)1/2(a,2+bn)) 12 00 

/ o 1/2 
JIV(R, O)IIA,1/2 = +O + (1 + n2)1/2(c2+d2 < 1/ 

fII(R, O)IA, 1/2 = ( 2 + ,(1 + n 2)1/2(a2 + b2)) 1/2 

1ii(R, O)IIA,1/2 = (2 ? 1 ?n )1/2(?dnn))1/ < O. 

A computation shows 

B(u, v; u, v))= 2(1 2 : n{anCn + bnbn + Cnen + dndn} 

+ ] 
K 77U ) n{andn- bnn- cnbn + dnaCn} 

2 r 
00 

(+ 2K L n{(1 + K)(anan + bnbn + Cnen + dndn) 

+ K(andn - nn- cnbn + dnC7)} 

< 1: Zn(a2 + b2?+C2?+dn2)~ 
(I + 2K) 

n flf l 

0 ) 1/2 
* {Zn(at2+bn2+c 2+dn2)} 

< 4(1?+K)7zru 
(1 + 2K) I(U, V)IA, 1/2II(U, f)IA, 1/2 

<4(1 + K)7r 1/1 (U V) 
- (1 +2K) V)12F(UV)I/,e 

where the last inequality is a consequence of the fact that IIu HA, 1/2 is equivalent 
to the norm IIUIII/2,re in the Sobolev space H1/2(re), and c is a constant 
independent of N. By the trace theorem we obtain the inequality (47). 

Furthermore, 
27rli 00 

B(u, v; u, v) =n a 2+ bn2 + C2 +dn2 
(1 + 2K) 

+K(bn-cn)2 +K(an+d)2} >O bV(u, v) e V. 

Similarly, for BN(U, V; iU, ID) we obtain 

IBN(U, V; U, v)? < MV 1(u, v)eIV.I(ui v)IIV V(U, v), (u, v) E V 

BN(U, Vp U, V) L> 2 c (U, V) e V. 
The proof of Lemma 2 is completed. El 
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On the other hand, we have 

IB(u, v; ui, v) - BN(U, v; u, i)1 

2|( 1 + 2K ) Z n{ anian + bnbn + Cnen + dndn} 
(1?+2K) n=N+1I 

+2K 7rU Z 
0 

+4(I+ 2K): { nnb an dn-)bnen Cbn + dnjn n=N+ 1 

- n(1 i + +K E n + }n+C +d) 
4r1 K) 7r 

00 1 

< 4 7 +bn{ (an2)kl/2(a2 + +d2 d) 
n=N+1 =N+ 

r00 1/2 

* dx E n(n+ n+ + }dn 

n=N+l 

- Nk1 (u, V)Nk-1/2Ire(n 2 )k1/2 (a22e , Vk > 2. 

Hence we obtain the following error estimate: 

Lemma 3. The following error estimate holds: 

(49) |B(U, V; U~, V~)-BN(U, V; U~, V) C k |U )|-l>elu )l/>e 

00 ~~~~~k1 f(,VH.12I2(~~i)l2 

with k >2 and c aIconstant independent of N, (u, v), and (u, v). 5 

Theorem 1. Suppose Ji, f2 e H-' (Q2,); then the variational problem (45) has a 
unique solution (u, v) e V and problem (46) has a unique solution (UN, VN) E 
V. Furthermore, we have the following error estimate: 

(50) ||(u -UN, V -VN)HiV < /Jo N' 1 V|u, V)|k-1/2,Fe* 

Proof. By Lemmas l and 2, we knowthat A(u, v; ud, v)?:B(U, V; U,iV) and 
A(u, v; u, vi) + BN(U, V; U, V) are two symmetric, bounded, and coercive bi- 
linear functionals on V x V. By Cauchy's inequality, (fi, f2; i, v) is a linear 
functional on V . From the Lax-Milgram theorem [2], we obtain that the prob- 
lem (45) has a unique solution (u, v) which is the restriction to Qi? of the 
solution (u, v) of the original problem (1)-(4), and the problem (46) has a 
unique solution (UN, VN) . 

Let e1 = u - UN and e2 = v - VN; then (e1, e2) satisfies 

= BN(U, V; 2 , we) - B(U, V; AU, V) V( i, V5) e V. 
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Taking ui = e1 and vi = e2 in (51), we get 

floHl(el, el)II2 < A(el, e2; e1, e2) < IBN(U, v; e1, e2) - B(u, v; e1, e2) 

< Nk_1 10(u, v)Ikl/2,r'eHl(el, e2)IIV. 

The last inequality comes from Lemma 3. The inequality (50) now follows 
immediately. 5 

4. THE FINITE ELEMENT APPROXIMATION OF PROBLEM (46) 

For the sake of simplicity, let Fi be a polygonal line, and Sh be a triangu- 
lation of Qi satisfying 

nj= (U K) n K 
KE-9- kE.9 

where K is a triangle and K is a curved triangle with a curved side on Fe, 
and 

hk <a VK,KEg, 
Pk 

where hk = diameter of K or K, Pk = diameter of the inscribed circle of K 
or K, and h = max - hk . Let 

K, K E39 

Sh((Qi) = {v e H*1(Qi), VI K (vI k) is a linear polynomial VK(K) e 9}, 
Vh = Sh(t2i) X Sh(t2i). 

We know that the subspace Vh is a regular finite element space in the sense of 
Babuska and Aziz [1], which satisfies the following approximation property: 
(52) inf ll(u - Uh, V - Vh)Iv < chII(u, v)112,Q,. 

(Uh, Vh) EVh 

We now consider the approximation problem of (46): 

Find (ukh, vh) e Vh such that 

A (Uh , Vh; ui, b) +B(uN, Uh vh; u) v) 

=JJ (fi?+f2iJ)dxdy V(i, V) e Vh. 

By the Lax-Milgram theorem we have 

Theorem 2. The variational problem (53) has a unique solution (uh, vh) e Vh. 

Theorem 3. Assume that u, v e H2( Qj) n Hk-l/21(re), k > 2, where (u, v) is 
the solution of problem (45); then the following error estimate holds: 

|(u --u, v-v ) V )v < c {hI(u, V)H112,Q + Nk- (U 1, V)lk-1/22,e } 
where c is a constant independent of h and N. 
Proof. From the equalities (45) and (53) we obtain 

) A(uB-Nu, v-Vh; i, V) + BN(u-; , Vh V U, ) 
h 

Vh 

=BN(U, V; iU, V) -B(U, V; iU, V) V(i, V) E Vh. 
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Then 

I -U, Vh-V h)||2 

< N {X(U*U, V UN-U, VN-V) 

+ BN(Uh-U, V_- ; Uh - V-h < -f{A(UNU VNV N*-U VN- 

g3o 

+B(UU Vh-V ; UhyU Vh-V 

+ BN(uN v; N*-u VyV- N(,V NV) 

(Mo V 1 NlU- V)IV(UN-U1V ) 

C h~hh 

+ fBNk |(u, vV)| ku/2FieVh(U. -U, VN-Uv)HV U (N , V) e Vh. 

Therefore, we have 

|(Uh -u h - ) 1V < (Mo MI) 

+ Nk1 0(U, V)lk-1/2,Fe V(ii, VD) e Vh. 

By the triangle inequality, 

||(U- U V -Vh)11V < ll(U -_ i, V -_)1V + (Uh - U, Vh-V)Hv 

< (Mo + M? + 1) 1(U - u, V - f)H1v 

+ f (U, V)Hlk- 1/2,r' 

Hence, we get 

|| (u -UN v-vh )N ll v < A 3 inf 11(u-u, v-v)llv gob (ii, 0)E Vh 

+ BKk1 |(u, V)H1k-1/2,Fe 

By inequality (52), the proof is completed. 5 

5. NUMERICAL EXAMPLE 

Suppose that the unbounded domain Q = {(x, y) c -, 1 < IxI or 1 < Iy} 
is the exterior domain of the square [- 1, 1 ] x [- 1, 1 ] with boundary Fi . Let 

Ui(X, Y) = )L+3Yt - I 
_lg _____y _ 

05) 
U1 (X 1 4 7= Z(A + 2,u) {2 l x2 + (y - 0.5)2 

A +H X2 x2 

+?3,u X2+((y-0.5)2 x2+(y+0.5)2)} 

___ + _ ,u x(y - 0.5) _ x(y + 0.5) 
vi(x, >= 47ur(A +2t) x2+(y-0.5)2 X2+(y+0.5)2) 
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y 

mesh A 

2 

A B 

1 

0 1 E 2 x 

FIGURE 2 

Then (u1, v1) is the unique solution of the following boundary value problem: 

-'UU -(A ,0 / au +Ov = inQ 
O( Ou av -ItAv-(?I+u))0~0 ?<9j+=0 inQ2 

-PA/v - 0. + u)) 
a au + _) = O in Q, 

u = u1 on Fi, 
v = v1 on ri, 

u, v are bounded when r -+ ?oo. 

We take Fe as a circumference with radius 2; then we consider the finite 
element approximation of (u, v) on the bounded domain Qj = {(x, y) e Q 
and r<2}. 

Since u1 and v1 are symmetric about the x and y axes, respectively, and 
antisymmetric about the y and x axes, respectively, the domain of computa- 
tion was taken to be the part lying in the first quadrant. The symmetric and 
antisymmetric boundary conditions were used along x = 0 and y = 0. 

Three meshes were used in computation. Figure 2 shows the triangulation 
for mesh A. Mesh B was generated by dividing the triangles in mesh A into 
four small triangles, and mesh C was similarly generated. Linear finite ele- 
ment approximation was used in computation. Table 1 shows the maximum 
of the errors u - uh and v - vh over the mesh points when N = 5. Since 
the maximum norm of u is about 0.1 17, the maximum relative error for u is 

TABLE 1. Maximum error for N = 5 

mesh A B C 

h 0.36 0.18 0.09 

max lui - uh 0.370d-02 0.117d-02 0.294d-03 

max Ivi - vh 0.651d-02 0.252d-02 0.840d-03 
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TABLE 2. Maximum error for mesh A 

N 0 1 3 5 

max lui - u ih 0.433d-01 0.61Od-02 0.358d-02 0.370d-02 

max vi - vh 0.721d-02 0.148d-01 0.658d-02 0.651d-02 

TABLE 3. Maximum error for mesh B 

N 0 1 3 5 

maxlu -ui | 0.412d-01 0.52ld-02 0.116d-02 0.117d-02 

max Ivi - vh 0.493d-02 0.lOld-01 0.231d-02 0.252d-02 

TABLE 4. Maximum error for mesh C 

N 0 1 0.33d- 

max Iui - uh4 0.409d-01 0.568d-02 0.433d-03 0.294d-03 

max Ivi - vh 0.408d-02 0.816d-02 0.624d-03 0.840d-03 

about 3.2% for mesh A, 1% for mesh B, and 0.25% for mesh C. The maximum 
norm of v is about 0.555, hence the maximum relative error for v is about 
11.7% for mesh A, 4.54% for mesh B, and 1.51% for mesh C. The convergence 
is fast; in fact, the rates are much higher than linear. 

Table 2 shows the maximum of the errors u - uh4 and v - v h for mesh 
A when N = 1, 3, and 5; Tables 3-4 show the analogous results for meshes 
B and C. As we can see from the tables, for u, N = 3 is good enough for 
meshes A and B, since the meshes are too coarse and then the main errors are 
due to the coarse meshes. This becomes clear when the mesh is refined, N = 5 
did improve the accuracy for mesh C. For v, the effects of N were not so 
significant as for u for meshes A and B; this is because on the boundary Fe, v 
is very close to zero, so even for N = 0, the error is already small. The effects 
of N showed up only for finer meshes, as is shown in Table 4 for mesh C. 

Figures 3-5 show the results for u and v along some curves, where the inte- 
rior points are the points along the curve ABCDE shown in Figure 2, and the 
boundary points are the points along the boundary Fe, i.e., the circumference 
with radius 2. The effects of N are shown for meshes A-C; as shown in the 
figures, N = 5 gives good approximations, and therefore in the computation 
very few terms in the bilinear form BN (U, v; i, i) are needed in order to get 
good accuracy. 
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